Publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2025

  1. A scalable approach to investigating sequence-to-expression prediction from personal genomes
    Anna E Spiro*, Xinming Tu*, Yilun Sheng, Alexander Sasse, Rezwan Hosseini, Maria Chikina, and Sara Mostafavi
    bioRxiv, 2025
    Under review at Nature Methods
  2. Deep genomic models of allele-specific measurements
    Xinming Tu, Alexander Sasse, Kaitavjeet Chowdhary, Anna E Spiro, Liang Yang, Maria Chikina, Christophe Benoist, and Sara Mostafavi
    bioRxiv, 2025
  3. Sci Adv
    Contrasting genetic predisposition and diagnosis in psychiatric disorders: A multi-omic single-nucleus analysis of the human OFC
    Nathalie Gerstner, Anna S Fröhlich, Natalie Matosin, Miriam Gagliardi, Cristiana Cruceanu, Maik Ködel, Monika Rex-Haffner, Xinming Tu, and 4 more authors
    Science Advances, 2025
  4. GAME: Genomic API for Model Evaluation
    Ishika Luthra, Satyam Priyadarshi, Rui Guo, Lukas Mahieu, and  others
    bioRxiv, 2025
    Large-scale community-led model benchmarking system

2024

  1. MLCB
    A Supervised Contrastive Framework for Learning Disentangled Representations of Cell Perturbation Data
    Xinming Tu, Jan-Christian Hutter, Zitong Jerry Wang, Takamasa Kudo, Aviv Regev, and Romain Lopez
    Proceedings of the 18th Machine Learning in Computational Biology meeting, 2024

2023

  1. HDSR
    What Should Data Science Education Do with Large Language Models?
    Xinming Tu, James Zou, Weijie J. Su†, and Linjun Zhang†
    Harvard Data Science Review, 2023
  2. Nat Commun
    Spatial-linked alignment tool (SLAT) for aligning heterogenous slices
    Chen-Rui Xia, Zhi-Jie Cao, Xin-Ming Tu, and Ge Gao
    Nature Communications, 2023

2022

  1. Cross-Linked Unified Embedding for cross-modality representation learning
    Xinming Tu*, Zhi-Jie Cao*, Chen-Rui Xia, Sara Mostafavi†, and Ge Gao†
    NeurIPS(Oral), 2022

2021

  1. Identifying complex motifs in massive omics data with a variable-convolutional layer in deep neural network
    Jing-Yi Li*, Shen Jin*, Xinming Tu, Yang Ding†, and Ge Gao†
    Briefings in Bioinformatics, 2021
    bbab233

2019

  1. Expectation pooling: an effective and interpretable pooling method for predicting DNA–protein binding
    Xiao Luo*, Xinming Tu*, Yang Ding, Ge Gao†, and Minghua Deng†
    Bioinformatics, 2019
  2. An exact transformation of convolutional kernels enables accurate identification of sequence motifs
    Yang Ding, Jing-Yi Li, Meng Wang, Xin-Ming Tu, and Ge Gao
    bioRxiv, 2019